
CS106B
Spring 2013

Handout #19S
May 13, 2013

Section Solutions 6

Based on handouts by Jerry Cain, Julie Zelenski, and Eric Roberts

Problem One: Double-Ended Queues
class Deque {
public:
 Deque();
 ~Deque();

 /* Adds a value to the front or the back of the deque. */
 void pushFront(int value);
 void pushBack(int value);

 /* Returns and removes the first or last element of the deque. */
 int popFront();
 int popBack();

 private:
 struct Cell {
 int value;
 Cell* next;
 Cell* prev;
 };
 Cell* head;
 Cell* tail;
 };

 /* Initially, there are no elements at all. */
 Deque::Deque() {
 head = tail = NULL;
 }

 /* Standard linked-list deletion code. */
 Deque::~Deque() {
 while (head != NULL) {
 Cell* next = head->next;
 delete head;
 head = next;
 }
 }

 void Deque::pushFront(int value) {
 /* Create the new cell to add. */
 Cell* cell = new Cell;
 cell->value = value;

 /* This cell is at the front of the list. */
 cell->next = head;
 cell->prev = NULL;

 /* If the list is empty, the new cell is now the sole element. */
 if (head == NULL) {
 head = tail = cell;
 }
 /* Otherwise, rewire the first element to point back at the new cell,
 * then update the head pointer.
 */
 else {
 head->prev = cell;
 head = cell;
 }
 }

- 1 -

 void Deque::pushBack(int value) {
 /* Create the new cell to add. */
 Cell* cell = new Cell;
 cell->value = value;

 /* This cell is at the back of the list. */
 cell->prev = tail;
 cell->next = NULL;

 /* If the list is empty, the new cell is now the sole element. */
 if (tail == NULL) {
 head = tail = cell;
 }
 /* Otherwise, rewire the last element to point into the new cell,
 * then update the tail pointer.
 */
 else {
 tail->next = cell;
 tail = cell;
 }
 }

 int Deque::popFront() {
 if (head == NULL) error("That which does not exist cannot be popped.");

 /* Cache the value to be removed, since we're going to free memory. */
 int result = head->value;
 Cell* toRemove = head;

 /* Advance the head to the next location. */
 head = head->next;

 /* There are two cases to consider. First, if the deque is nonempty,
 * then we need to break the backward-pointing link to the cell we're
 * about to remove.
 */
 if (head != NULL) {
 head->prev = NULL;
 }
 /* Otherwise, we have to also update the tail pointer to be NULL. */
 else {
 tail = NULL;
 }

 /* Reclaim memory. */
 delete toRemove;

 return result;
 }

 /* … continued … */

- 2 -

 int Deque::popBack() {
 if (tail == NULL) error("That which does not exist cannot be popped.");

 /* Cache the value to be removed, since we're going to free memory. */
 int result = tail->value;
 Cell* toRemove = tail;

 /* Retreat the tail to the previous location. */
 tail = tail->prev;

 /* There are two cases to consider. First, if the deque is nonempty,
 * then we need to break the forward-pointing link to the cell we're
 * about to remove.
 */
 if (tail != NULL) {
 tail->next = NULL;
 }
 /* Otherwise, we have to also update the head pointer to be NULL. */
 else {
 head = NULL;
 }

 /* Reclaim memory. */
 delete toRemove;

 return result;
 }

Problem Two: Quicksort Revisited

Here is one possible implementation:
/* Concatenates the two given lists together, updating first to
 * point to the new first cell of the concatenated list.
 */
void concatenateLists(Cell*& first, Cell* second) {

/* Base case: If the first list is empty, we concatenate the
 * lists by just setting the second list to point to the first
 * list.
 */
if (first == NULL) {

first = second;
}
/* Recursive step: Otherwise, we concatenate the second list to
 * the list appearing after the first cell.
 */
else {

concatenateLists(first->next, second);
}

}

/* Prepends the given single cell to the given list, updating the
 * pointer to the first element of that linked list.
 */
void prependCell(Cell* toPrepend, Cell*& list) {

toPrepend->next = list;
list = toPrepend;

}

/* … continued on next page … */

- 3 -

void partitionList(Cell* list, Cell*& smaller, Cell*& pivot, Cell*& bigger) {
/* Distribute cells in the list into the three groups. */
while (list != NULL) {

/* Remember the next pointer, because we're going to remove this
 * element from the list it is currently in.
 */
Cell* next = list->next;

/* Determine which list this element belongs to. */
if (list->value == pivot->value) {

prependCell(list, pivot);
} else if (list->value < pivot->value) {

prependCell(list, smaller);
} else {

prependCell(list, bigger);
}

list = next;

}
}

void quicksort(Cell*& list) {
/* Determine the length of the list. If it's length 0 or 1, we're done. */
if (list == NULL || list->next == NULL) return;

/* Remove the first element as the pivot element. */
Cell* pivot = list;
Cell* rest = pivot->next;

/* Remove the pivot element from the list. */
pivot->next = NULL;

/* Create two other lists: one of elements less than the pivot and one of
 * elements greater than the pivot.
 */
Cell* smaller = NULL;
Cell* bigger = NULL;

/* Distribute the elements into the three lists based on
 * whether they are smaller than, equal to, or greater
 * than the pivot.
 */
partitionList(rest, smaller, pivot, bigger);

/* Recursively sort the two smaller regions. */
quicksort(smaller);
quicksort(bigger);

/* Concatenate everything together. */
concatenateLists(smaller, pivot);
concatenateLists(smaller, bigger);

/* The sorted list now begins with the element pointed at by the
 * smaller pointer.
 */
list = smaller;

}

- 4 -

